Lesson 5

Decision Tree (Rule Based Approach)

outlook	temperature	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Features

outlook	temperature	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

				Class
outlook	temperature	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

outlook	temperature	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Given : <**sunny**, **cool**, **high**, **true**>

Predict, if there will be a match?

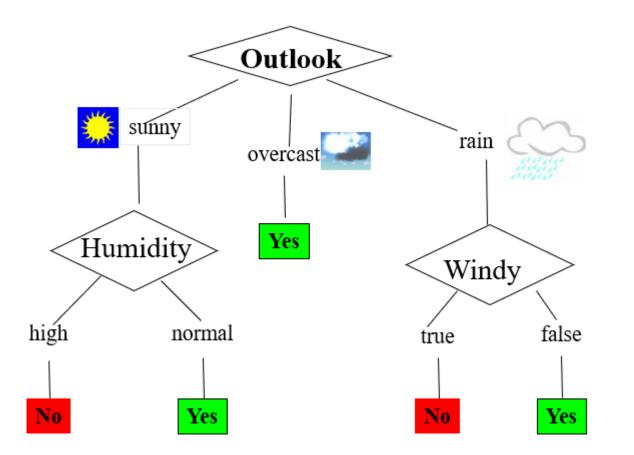
outlook	temperature	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

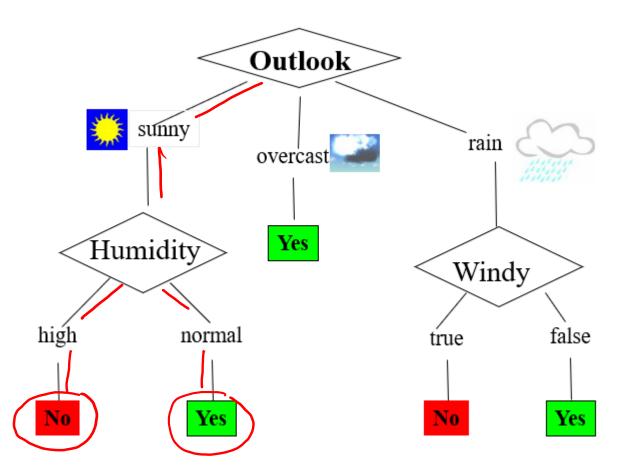
Given : <sunny, cool, high, true>

Predict, if there will be a match?

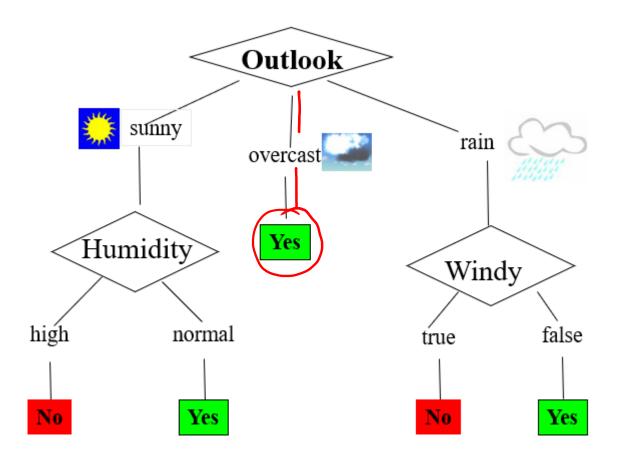
Assume that I have a set of rules:

- If ((lookout=sunny) and (humudity=high) and (windy=false)) then (yes) else (no)
- If (lookout=overcast) then (yes)
- If ((lookout=sunny) and (humudity=high)) then (yes) else (no)
- *SO ON*.....



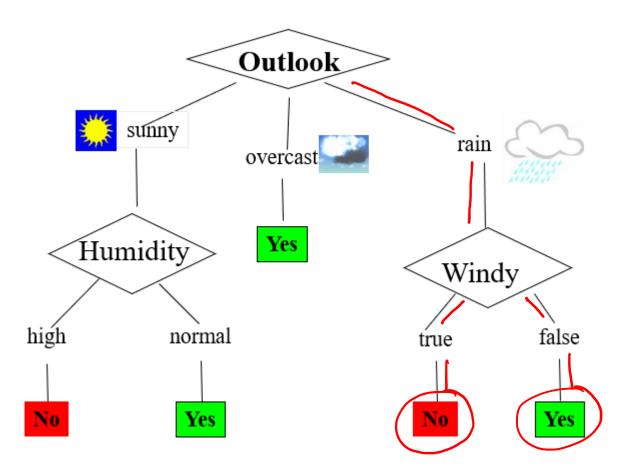


Rule 1: If ((lookout=sunny) and (humudity=high)) then (yes) else (no)



Rule 1: If ((lookout=sunny) and (humudity=high)) then (yes) else (no)

Rule 2: If (lookout=overcast) then (yes)



Rule 1: If ((lookout=sunny) and (humudity=high)) then (yes) else (no)

Rule 2: If (lookout=overcast) then (yes)

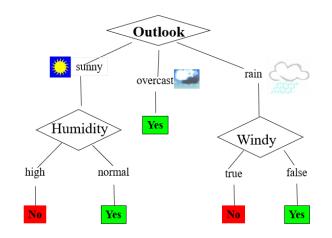
Rule 3: If ((lookout=rain) and (windy=true)) then (no) else (yes)

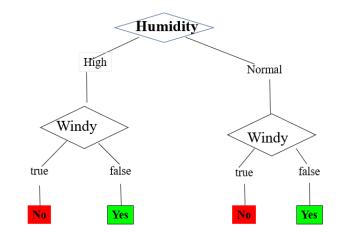
Many possible Trees

outlook	temperature	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Many possible Trees

outlook	temperature	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no





Which Tree is the Best?

- Which feature should be used to break the dataset?
- Types of DT
 - ID3 (Iterative Dichotomiser 3)
 - C4.5 (Successor of ID3)
 - CART (Classification and Regression Tree)
 - Random Forest

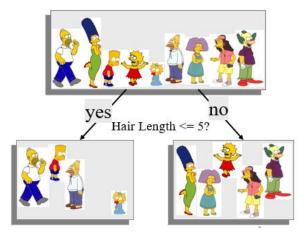
Pe	rson	Hair Length	Weight	Age	Class
	Homer	0″	250	36	Μ
Ö	Marge	10″	150	34	F
	Bart	2″	90	10	Μ
0	Lisa	6″	78	8	F
	Maggie	4″	20	1	F
	Abe	1″	170	70	Μ
	Selma	8″	160	41	F
()	Otto	10″	180	38	Μ
	Krusty	6″	200	45	Μ

Person	Hair Length	Weight	Age	Class
🕝 Homer	0″	250	36	М
o Marge	10″	150	34	F
🧓 Bart	2″	90	10	М
😔 Lisa	6″	78	8	F
📀 Maggie	4″	20	1	F
🚱 Abe	1″	170	70	М
Selma	8″	160	41	F
Otto 🥺	10″	180	38	М
🔮 Krusty	6″	200	45	М

$$Entropy(S) = -\frac{p}{p+n} \log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log_2\left(\frac{n}{p+n}\right)$$

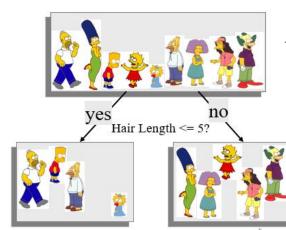
 $Entropy(4\mathbf{F}, 5\mathbf{M}) = -(4/9)\log_2(4/9) - (5/9)\log_2(5/9)$ = 0.9911 1. Calculate the entropy of the total dataset => H(S)=0.9911

Pe	rson	Hair Length	Weight	Age	Class
	Homer	0″	250	36	Μ
Ö	Marge	10″	150	34	F
Ō	Bart	2″	90	10	М
0	Lisa	6″	78	8	F
	Maggie	4″	20	1	F
	Abe	1″	170	70	М
	Selma	8″	160	41	F
	Otto	10″	180	38	Μ
	Krusty	6″	200	45	Μ



- 1. Calculate the entropy of the total dataset
- 2. Choose and attribute and Split the dataset by an attribute

Pe	rson	Hair Length	Weight	Age	Class
(Homer	0″	250	36	Μ
(Marge	10″	150	34	F
Ō	Bart	2″	90	10	Μ
0	Lisa	6″	78	8	F
	Maggie	4″	20	1	F
	Abe	1″	170	70	Μ
\bigcirc	Selma	8″	160	41	F
	Otto	10″	180	38	Μ
	Krusty	6″	200	45	Μ



 $Entropy(3\mathbf{F}, 2\mathbf{M}) = -(3/5)\log_2(3/5) - (2/5)\log_2(2/5)$ = **0.9710**

 $Entropy(1\mathbf{F}, 3\mathbf{M}) = -(1/4)\log_2(1/4) - (3/4)\log_2(3/4)$ = **0.8113**

- 1. Calculate the entropy of the total dataset
- 2. Choose and attribute and Split the dataset by an attribute
- 3. Calculate the entropy of each branch

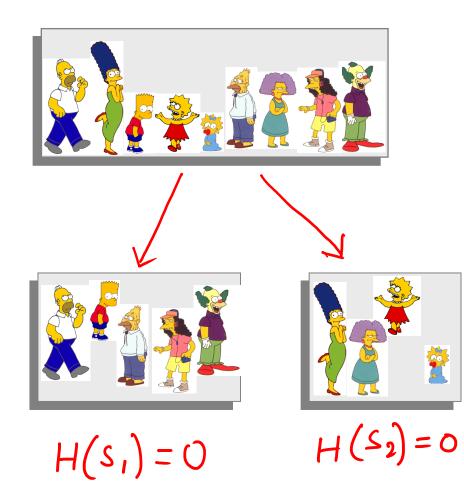
yes Hair Length <= 5?

no

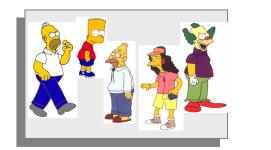
Pe	rson	Hair Length	Weight	Age	Class	1. Calculate the entropy of the total dataset
	Homer	0″	250	36	М	 Choose and attribute and Split the dataset by an attribute
Ö	Marge	10″	150	34	F	an attribute
Ğ	Bart	2″	90	10	М	3. Calculate the entropy of each branch
0	Lisa	6″	78	8	F	 Calculate Information Gain of the split
	Maggie	4″	20	1	F	
	Abe	1″	170	70	М	$IG(A_1) = H(S) - [p(S_1)H(S_1) + p(S_2)H(S_2)]$
\bigcirc	Selma	8″	160	41	F	$C_{ain}(\text{Hoir I on ath } < 5) = 0.0011 (1/0 * 0.9112 + 5/0 * 0.0710) = 0.0011$
<u>`</u>	Otto	10″	180	38	М	$Gain(\text{Hair Length} \le 5) = 0.9911 - (4/9 * 0.8113 + 5/9 * 0.9710) = 0.0911$
	Krusty	6″	200	45	М	
En			Entr	ropy(3 F ,2) = 0.9	$\mathbf{M} = -(3/5)\log_2(3/5) - (2/5)\log_2(2/5)$ 710	

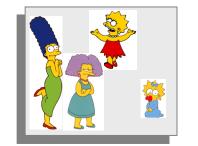
Entropy(1**F**,3**M**) = $-(1/4)\log_2(1/4) - (3/4)\log_2(3/4)$ = 0.8113

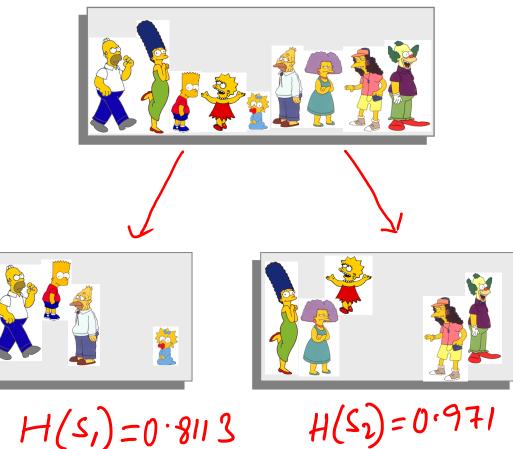
What is Information Gain?



What is Information Gain?

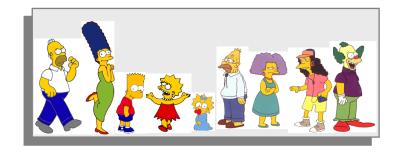


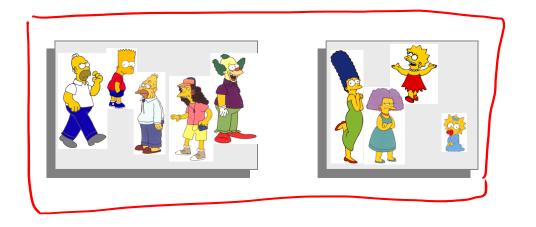


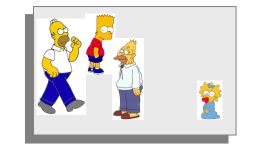


 $H(s_{1}) = 0.8113$

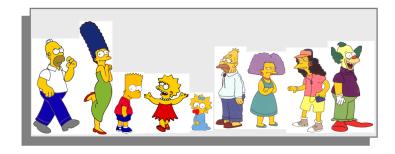
Which split is better?

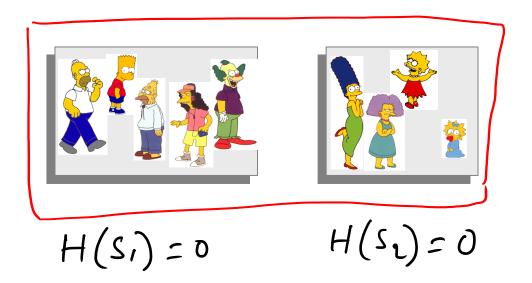




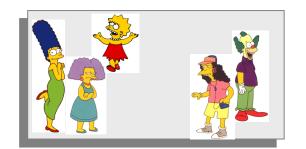


What is information gain?





*



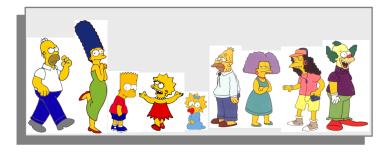
 $H(s_1) = 0.8113$

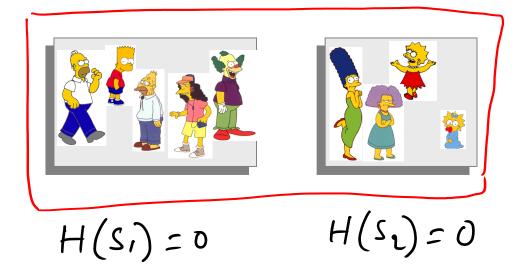
 $H(S_{1}) = 0.971$

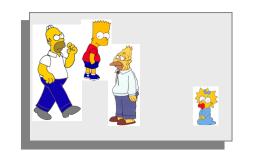
What is information gain?

Reduction in uncertainty of the parent dataset after the split.

 $IG(A_1) = H(S) - [p(S_1)H(S_1) + p(S_2)H(S_2)]$







 $H(s_1) = 0.8113$

 $H(S_{1}) = 0.971$

yes Hair Length <= 5?

no

Pe	rson	Hair Length	Weight	Age	Class	1. Calculate the entropy of the total dataset
	Homer	0″	250	36	М	 Choose and attribute and Split the dataset by an attribute
Ö	Marge	10″	150	34	F	an attribute
Ğ	Bart	2″	90	10	М	3. Calculate the entropy of each branch
0	Lisa	6″	78	8	F	 Calculate Information Gain of the split
	Maggie	4″	20	1	F	
	Abe	1″	170	70	М	$IG(A_1) = H(S) - [p(S_1)H(S_1) + p(S_2)H(S_2)]$
\bigcirc	Selma	8″	160	41	F	$C_{ain}(\text{Hoir I on ath } < 5) = 0.0011 (1/0 * 0.9112 + 5/0 * 0.0710) = 0.0011$
<u>`</u>	Otto	10″	180	38	М	$Gain(\text{Hair Length} \le 5) = 0.9911 - (4/9 * 0.8113 + 5/9 * 0.9710) = 0.0911$
	Krusty	6″	200	45	М	
			Entr	ropy(3 F ,2) = 0.9	$\mathbf{M} = -(3/5)\log_2(3/5) - (2/5)\log_2(2/5)$ 710	

Entropy(1**F**,3**M**) = $-(1/4)\log_2(1/4) - (3/4)\log_2(3/4)$ = 0.8113

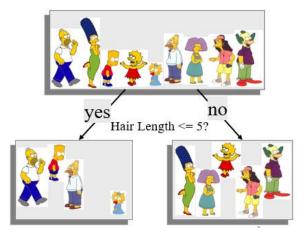
Person	Hair Length	Weight	Age	Class
🕞 Homer	0″	250	36	М
o Marge	10″	150	34	F
🧓 Bart	: 2″	90	10	М
🧔 Lisa	6″	78	8	F
🎯 Maggie	e 4″	20	1	F
📀 Abe	e 1″	170	70	Μ
Selma	8″	160	41	F
Otto	10″	180	38	Μ
🧐 Krusty	6″	200	45	Μ

Gain(Hair Length <= 5) = 0.0911Gain(Weight <= 160) = 0.5900

Gain(Age <= 40) = **0.0183**

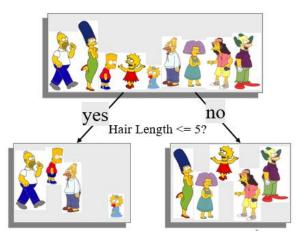
- 1. Calculate the entropy of the total dataset
- 2. Choose and attribute and Split the dataset by an attribute
- 3. Calculate the entropy of each branch
- 4. Calculate Information Gain of the split
- 5. Repeat 2, 3, 4 for all Attributes
- 6. The attribute that yields the largest IG is chosen for the decision node.

Pe	rson	Hair Length	Weight	Age	Class
	Homer	0″	250	36	Μ
Ö	Marge	10″	150	34	F
	Bart	2″	90	10	Μ
0	Lisa	6″	78	8	F
	Maggie	4″	20	1	F
	Abe	1″	170	70	М
	Selma	8″	160	41	F
()	Otto	10″	180	38	Μ
	Krusty	6″	200	45	Μ



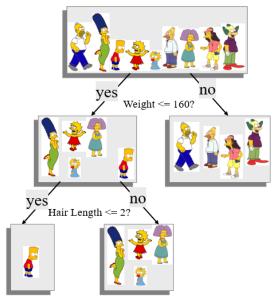
- 1. Calculate the entropy of the total dataset
- 2. Choose and attribute and Split the dataset by an attribute
- 3. Calculate the entropy of each branch
- 4. Calculate Information Gain of the split
- 5. Repeat 2, 3, 4 for all Attributes
- 6. The attribute that yields the largest IG is chosen for the decision node.

Pe	rson	Hair Length	Weight	Age	Class
(Homer	0″	250	36	Μ
0	Marge	10″	150	34	F
J	Bart	2″	90	10	Μ
	Lisa	6″	78	8	F
	Maggie	4″	20	1	F
	Abe	1″	170	70	Μ
	Selma	8″	160	41	F
	Otto	10″	180	38	Μ
	Krusty	6″	200	45	Μ



- 1. Calculate the entropy of the total dataset
- 2. Choose and attribute and Split the dataset by an attribute
- 3. Calculate the entropy of each branch
- 4. Calculate Information Gain of the split
- 5. Repeat 2, 3, 4 for all Attributes
- 6. The attribute that yields the largest IG is chosen for the decision node.
- 7. Repeat 1 to 6 for all sub-databases till we get subdatabases with single class

Person	Hair Length	Weight	Age	Class
😑 Hom	er 0"	250	36	Μ
o Mar	ge 10″	150	34	F
🧓 Ва	art 2"	90	10	Μ
🥥 Li	sa 6"	78	8	F
🎯 Magg	jie 4″	20	1	F
📀 Al	be 1"	170	70	Μ
Seln	na 8"	160	41	F
Ot 📀	to 10″	180	38	Μ
🥹 Krus	sty 6"	200	45	Μ



- 1. Calculate the entropy of the total dataset
- 2. Choose and attribute and Split the dataset by an attribute
- 3. Calculate the entropy of each branch
- 4. Calculate Information Gain of the split
- 5. Repeat 2, 3, 4 for all Attributes
- 6. The attribute that yields the largest IG is chosen for the decision node.
- 7. Repeat 1 to 6 for all sub-databases till we get subdatabases with single class